Thursday, October 3, 2013

Dry Heat Sterilization

Sterilization (or sterilisation) is a term referring to any process that eliminates (removes) or kills all forms of microbial life, including transmissible agents (such as fungibacteriaviruses, spore forms, etc.) present on a surface, contained in a fluid, in medication, or in a compound such as biological culture media.[1][2]Sterilization can be achieved by applying heatchemicalsirradiationhigh pressure, and filtration or combinations thereof.

The term has evolved to include the disabling or destruction of infectious proteins such as prions related to Transmissible Spongiform Encephalopathies (TSE).[3]

Heat[edit source]

See also: Dry heat sterilization and Moist heat sterilization

Steam sterilization[edit source]

Front-loading autoclaves

A widely used method for heat sterilization is the autoclave, sometimes called a converter. Autoclaves commonly use steam heated to 121–134 °C (250–273 °F). To achieve sterility, a holding time of at least 15 minutes at 121 °C (250 °F) at 100 kPa (15 psi), or 3 minutes at 134 °C (273 °F) at 100 kPa (15 psi) is required. Additional sterilizing time is usually required for liquids and instruments packed in layers of cloth, as they may take longer to reach the required temperature (unnecessary in machines that grind the contents prior to sterilization). Following sterilization, liquids in a pressurized autoclave must be cooled slowly to avoid boiling over when the pressure is released. Modern converters operate around this problem by gradually depressing the sterilization chamber and allowing liquids to evaporate under a negative pressure, while cooling the contents.

Proper autoclave treatment will inactivate all fungi, bacteria, viruses and also bacterial spores, which can be quite resistant. It will not necessarily eliminate allprions.

For prion elimination, various recommendations state 121–132 °C (250–270 °F) for 60 minutes or 134 °C (273 °F) for at least 18 minutes. The prion that causes the disease scrapie (strain 263K) is inactivated relatively quickly by such sterilization procedures; however, other strains of scrapie, as well as strains of CJD andBSE are more resistant. Using mice as test animals, one experiment showed that heating BSE positive brain tissue at 134–138 °C (273–280 °F) for 18 minutes resulted in only a 2.5 log decrease in prion infectivity. (The initial BSE concentration in the tissue was relatively low). For a significant margin of safety, cleaning should reduce infectivity by 4 logs, and the sterilization method should reduce it a further 5 logs.

To ensure the autoclaving process was able to cause sterilization, most autoclaves have meters and charts that record or display pertinent information such as temperature and pressure as a function of time. Indicator tape is often placed on packages of products prior to autoclaving. A chemical in the tape will change color when the appropriate conditions have been met. Some types of packaging have built-in indicators on them.

Biological indicators ("bioindicators") can also be used to independently confirm autoclave performance. Simple bioindicator devices are commercially available based on microbial spores. Most contain spores of the heat resistant microbe Geobacillus stearothermophilus (formerly Bacillus stearothermophilus), among the toughest organisms for an autoclave to destroy. Typically these devices have a self-contained liquid growth medium and a growth indicator. After autoclaving an internal glass ampule is shattered, releasing the spores into the growth medium. The vial is then incubated (typically at 56 °C (133 °F)) for 24 hours. If the autoclave destroyed the spores, the medium will retain its original color. If autoclaving was unsuccessful the B. sterothermophilus will metabolize during incubation, causing a color change during the incubation.

For effective sterilization, steam needs to penetrate the autoclave load uniformly, so an autoclave must not be overcrowded, and the lids of bottles and containers must be left ajar. Alternatively steam penetration can be achieved by shredding the waste in some Autoclave models that also render the end product unrecognizable. During the initial heating of the chamber, residual air must be removed. Indicators should be placed in the most difficult places for the steam to reach to ensure that steam actually penetrates there.

For autoclaving, as for all disinfection or sterilization methods, cleaning is critical. Extraneous biological matter or grime may shield organisms from the property intended to kill them, whether it physical or chemical. Cleaning can also remove a large number of organisms. Proper cleaning can be achieved by physical scrubbing. This should be done with detergent and warm water to get the best results. Cleaning instruments or utensils with organic matter, cool water must be used because warm or hot water may cause organic debris to coagulate. Treatment with ultrasound or pulsed air can also be used to remove debris.

Heat sterilization of foods

See also: Food safety

Although imperfect, cooking and canning are the most common applications of heat sterilization. Boiling water kills the vegetative stage of all common microbes. Roasting meat until it is well done typically completely sterilizes the surface. Since the surface is also the part of food most likely to be contaminated by microbes, roasting usually prevents food poisoning. Note that the common methods of cooking food do not sterilize food - they simply reduce the number of disease-causing micro-organisms to a level that is not dangerous for people with normal digestive and immune systems.

Pressure cooking is analogous to autoclaving and when performed correctly renders food sterile. However, some foods are notoriously difficult to sterilize with home canning equipment, so expert recommendations should be followed for home processing to avoid food poisoning.

Other heat sterilization methods[edit source]

Other heat methods include flaming, incinerationboilingtindalization, and using dry heat.

Flaming is done to loops and straight-wires in microbiology labs. Leaving the loop in the flame of a Bunsen burner or alcohol lamp until it glows red ensures that any infectious agent gets inactivated. This is commonly used for small metal or glass objects, but not for large objects (see Incineration below). However, during the initial heating infectious material may be "sprayed" from the wire surface before it is killed, contaminating nearby surfaces and objects. Therefore, special heaters have been developed that surround the inoculating loop with a heated cage, ensuring that such sprayed material does not further contaminate the area. Another problem is that gas flames may leave residues on the object, e.g. carbon, if the object is not heated enough.

A variation on flaming is to dip the object in 70% ethanol (or a higher concentration) and merely touch the object briefly to the Bunsen burner flame, but not hold it in the gas flame. The ethanol will ignite and burn off in a few seconds. 70% ethanol kills many, but not all, bacteria and viruses, and has the advantage that it leaves less residue than a gas flame. This method works well for the glass "hockey stick"-shaped bacteria spreaders.

Incineration will also burn any organism to ash. It is used to sanitize medical and other biohazardous waste before it is discarded with non-hazardous waste.

Boiling in water for fifteen minutes will kill most vegetative bacteria and inactivate viruses, but boiling is ineffective against prions and many bacterial and fungalspores; therefore boiling is unsuitable for sterilization. However, since boiling does kill most vegetative microbes and viruses, it is useful for reducing viable levels if no better method is available. Boiling is a simple process, and is an option available to most people, requiring only water, enough heat, and a container that can withstand the heat; however, boiling can be hazardous and cumbersome.

Tindalization[6] /Tyndallization[7] named after John Tyndall is a lengthy process designed to reduce the level of activity of sporulating bacteria that are left by a simple boiling water method. The process involves boiling for a period (typically 20 minutes) at atmospheric pressure, cooling, incubating for a day, boiling, cooling, incubating for a day, boiling, cooling, incubating for a day, and finally boiling again. The three incubation periods are to allow heat-resistant spores surviving the previous boiling period to germinate to form the heat-sensitive vegetative (growing) stage, which can be killed by the next boiling step. This is effective because many spores are stimulated to grow by the heat shock. The procedure only works for media that can support bacterial growth - it will not sterilize plain water. Tindalization/tyndallization is ineffective against prions.

Dry heat sterilizer

Dry heat can be used to sterilize items, but as the heat takes much longer to be transferred to the organism, both the time and the temperature must usually be increased, unless forced ventilation of the hot air is used. The standard setting for a hot air oven is at least two hours at 160 °C (320 °F). A rapid method heats air to 190 °C (374 °F) for 6 minutes for unwrapped objects and 12 minutes for wrapped objects.[8][9] Dry heat has the advantage that it can be used on powders and other heat-stable items that are adversely affected by steam (for instance, it does not cause rusting of steel objects).

Prions can be inactivated by immersion in sodium hydroxide (NaOH 0.09N) for two hours plus one hour autoclaving (121 °C or 250 °F). Several investigators have shown complete (>7.4 logs) inactivation with this combined treatment. However, sodium hydroxide may corrode surgical instruments, especially at the elevated temperatures of the autoclave.

Glass bead sterilizer, once a common sterilization method employed in dental offices as well as biologic laboratories,[10] is not approved by the U.S. Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC) to be used as inter-patients sterilizer since 1997.[11] Still it is popular in European as well as Israeli dental practice although there are no current evidence-based guidelines for using this sterilizer.[10]

1 comment:

Anonymous said...

Hi, very informative blog got good information about glass bead sterilizer. Sterilizer are a really very useful equipment in medical field